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For an approximate computation of the stationary turbulent boundary layer, 

the assumption is sometimes made that the laminar and turbulent boundary 

layers are analogous [ 1 1. This approach to the investigation of the 

turbulent motion of a liquid in the boundary layer permits certain im- 

portant results to be obtained relatively simply. It therefore seems con- 

venient to extend that analogy to the nonstationary boundary layer, 

particularly as the approximate methods of computing the stationary [2 1 
and nonstationary [ 3 ] laminar boundary layers have much in common. 

An approximate method of computation is presented, describing the non- 

stationary turbulent boundary layer, based on the assumed analogy between 

laminar and turbulent nonstationary layers. Examples are adduced which 

permit a number of valuable conclusions to be drawn. 

1. Statement of the problem. We consider the mean velocity of the 

liquid in a turbulent boundary layer with the velocity of the external 

current a function of time. We shall assume that the structure of the 

turbulent pulsations and the character of the mean motion of the liquid 

at all times permit the assumption that the usual postulates defining the 

mean, used in the derivation of Reynolds’ equation [ 2 1 are valid. That 

is, for the mean flow of the liquid in a turbulent boundary layer, the 

momentum equation can be written in the following form: 

(1.1) 

Here, as usual, 
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8*=y(l-;)dy, P’ = j;(l-;)dy 
0 0 

(1.2) 

where U(X, y, t) is the longitudinal velocity in the layer, U(X, t) is 
the given velocity on the outer boundary of the layer, r is the friction 

shear stress on the surface of the body in the fluid, p is the density of 

the fluid, I and y are the longitudinal and vertical coordinates respect- 

ively, and t is the time; the infinite limits in the integrals (1.2) 

correspond to the concept of an asymptotic boundary layer. 

Following the procedures of the computation of the stationary turbulent 

layer [ 1 I, we multiply both sides of equation (1.1) by a certain function 

C(R*) of the Reynolds number R’ and introduce the symbols 

where v is the kinematic viscosity; equation (1.1) takes the form 

Assuming 6**/6* = h, the two first terms on the left-hand side of equa- 

tion (1.4) can be expressed in the following form: 

Introducing the notation 

we write equations (1.5) and (1.6) as: 

_+y) i?!$ I i+m 
[ 
$+$tll (I--,n)cp 

1 

G(R’)~=L 
l+m [ 

as + ; g (1 - m) hp + ,,l 2 q 

(1.7) 

(‘33) 

(1.0) 

Finally, substituting (1.8) and (1.9) into equation (1.4). we obtain 

We now consider the quantities f and 5, defined by formulas (1.3). In 
the case of the laminar nonstationary boundary layer (3) the function 

G(R*) was put equal to R*, and the quantity f was itself the parameter 
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characterizing the form of the velocity profile in different cross-sections 

of the layer. There, the quantities 5 and h were functions of that para- 

meter. We assume that in the case of the turbulent layer too the function 

C(R*) may be fixed in such a manner as to permit the use of f as the para- 

meter of the velocity profile; and 6 and h are then considered as func- 

tions of f. Further, noticing that in the laminar boundary layer the 

quantity C(P) = R* is inversely proportional to the local coefficient of 

friction on the plate [ 2,3 I, in the turbulent case too, we put G(R*) = 

(P~~/y))f= 0’ where the value of R* is taken for the body around which 
flow occurs. In making this assumption, we determine the form of the func- 

tion C(R*) with the aid of the familiar power law for velocities and drag, 

which here takes the form 

c (H’) == 144.94 Ho”* (1.11) 

Thus, taking m(R*) = l/6, and fixing G(R*) according to formula (1.11). 
we will presume that [ and h are functions of f or $. If we should succeed 

in establishing the form of these functions, equation (1.10) will be the 

differential equation in 4, the solution of which, by means of (1.3), will 

make it possible to determine R* and therefore all the other basic quan- 

tities which characterize the boundary layer. 

2. Choice of the functions c(f) and h(f). Approximate computation of 

the nonstationary turbulent layer. As in the case of the stationary tur- 

bulent layer [ 1 I, in determining the functions c(f), and h(f) we take 

advantage of the assumption of the analogous nature of the laminar and 

turbulent nonstationary layers. For this purpose, we normalize the Para- 

meter f in the laminar [3 I and in the corresponding turbulent nonstation- 

ary layer in such a fashion that at the separation point its value iS 

unity. Then 

(2.1) 

where f, is the value of the non-normalized parameter f at the separation 

point, and ’ on f signifies the normalized quantity. We further normalize 

the functions < and h in such a manner that where f = p = 0 they become 

unity; that is 

(2.2) 

In carrying out the above analogy, we assume that the functions e(f”) 
and ho(f) have similar forms both in laminar and turbulent nonstationary 

boundary layers. 

In computing the nonstationary laminar boundary layer [3 I, we have 
assumed two different types of functions < and h corresponding to two 

families of profiles of velocity in cross-section of the layer. In one of 
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the velocity profiles, the usual Hartree functions have been used; in the 

other, the first approximation to the exact solution of the problem of 

the growth of the boundary layer having a free stream velocity of the 

form U = trim(x))) Nor. the latter family of velocities, being taken from 

the nonstationary problem, leads to a more precise result for the time 

at which separation starts for flow past a circular cylinder. However, 

if we pass over to the normalized functions c(p) and h’(p). the diffe- 

rence between <,O, hi0 obtained by means of the Hartree functions, and 

‘&O. hZO taken from the solution of the indicated nonstationary problem, 

is negligible (Fig. 1). From the figure we see, first, that the functions 

hi0 and hzO change very little, and may be taken as ho = hi0 = 0.922 

(mean value). In cases where the separation of the boundary layer is de- 

termined. more precise results apparently give ho equal to the separation 

value of hi0 = 0.642. Passing to the function 5” (f’), we put it in the 

form 
i” (5”) = I- f” + E (i”) (2.3) 

The figure shows the dotted straight line (2.3) for the case t = 0. 

The line falls between the continuous curves for [I (above) and 52 

(below). so that in the required interval of the values of jc the abso- 

lute magnitude of c(p) is small, and in the great majority of cases we 

may assume that c(p) is a linear function. 

Having established the form of the normalized functions 5” and ho for 
the determination of c and h in the turbulent layer, it remains to develop 

the function f,, the parameter of the turbulent layer at the point of 

separation, and the magnitude of h for f = 0. The latter quantity is 

taken as equal to (h) f = o = 0.714 in most papers [ 2 1. As far as f, is 

concerned, it has not as yet been definitely established, and independent 

experimental determinations are needed to evalue it. Nevertheless, on the 

basis of data at hand [ 1 I, it is possible to write the following equa- 

tion at the separation point: 

(2.4) 
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which leads to the result f, = - 5, with the aid of (1.3) and h = h’(/~)~,o 

= 0.46, where ho = 0.642 is taken at the separation point. 

It now remains to write the expression for the functions h and 5, which 

appear in equation (1.10). By use of the mean value of ho derived above, 

on the basis of the second formula (2.2), we have h(f) = 0.66. On the 

other hand, putting the assumption c = 0 into (2.3), and in the turbulent 

layer assuming (Z,f_o = 1, from the first formula (2.2), we obtain 

Substituting the assumed h and 5 into equation (l.lO), we finally write 

it in the form 

(2.6) 

where 

a = h = 0.66, b = 3h + hm + m + 1 + f (1 + m) = 3.02 (2.7) 
8 

c = 2 + f (1 + m) = 1.77 p = 1 + I,, = 1.17 
8 

Differential equation (2.6) is analogous to the corresponding equation 

assumed as the basis of the computation of the laminar nonstationary 

boundary layer [3 1. This fact is the consequence of the assumption as to 

the analogous nature of laminar and turbulent nonstationary layers. 

Intergration of equation (2.6) under suitable conditions solves the 

problem of the approximate computation of the nonstationary turbulent 

boundary layer. In practice. if 4 is known, it can be used to determine 

R*, with the aid of (1.3) and (1.11). according to the formula 

R’ = 0.006899 !?!? “’ 
Y 

(2.8) 

Thereupon the quantity 6* is derived from R*, and in turn, a** = h8*. 

The shear stress on the wetted surface r. is expressed in the following 

manner: 

r. = pv (2.9) 

From this, the condition of separation of the boundary layer r. = 0, 

is written in the form 

(2.10) 
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All the foregoing considerations are readily generalized for the case 

of the axisymmetrical nonstationary turbulent boundary layer. Indeed, 

again using the momentum equation, which would differ from (1.1) only by 

the presence on the left-hand side of the additional term (l/r)(dr/dr)S**, 

we thus obtain the fblloning differential equation for 4: 

(2.11) 

where Q = h(1 + I)) = 0.771 and r is the radius of any of the parallel 

contours of the wetted surface. 

3. Examples. We pass to a consideration of several examples. 

1. Owing to the fact that equation (2.6) and the corresponding equa- 

tion of laminar motion 13 1 have the same form, classes of problems for 

which (2.6) becomes an ordinary differential equation will be the same 

as in reference [3 1. Without writing out all the equations that pertain 

to this problem, we dwell on the particular example of liquid motion at 

the forward part of a blunt obstacle where the velocity at the edge of 

the boundary layer is expressed by the formula 

U = UOk (4) xh, E = tU,h (3.1) 

where the constants U0 and x have the dimensions [ UO ] = LT-l, [A] = L-l, 

and L and T are the dimensions of length and time. 

In this case it is easy to obtain the following expression for 4: 

XU:kC eap(-~SXdi)[~+pSk’exp(bSkdl)dF] ‘9=- (3.2) 
0 

where D is a constant of integration. If the motion of the body in the 
liquid starts from rest, from the condition that 4 be finite for t = 0 

and k = 0 it follows that D = 0. For such a motion, the condition of 

separation of the boundary layer is written in the form 

k&(kZ+ $)exP(-b skdi)~k’exp~~sndl)d~=~* 

0 

(3.3) 

correct both for laminar and turbulent flow. Equation (3.3) permits the 

conclusion that separation of the boundary layer in the case considered 

takes place at all x simultaneously. Hence, by comparing the coefficients 

PI b, c and f, in the turbulent and corresponding laminar layers (for 
the Hartree profile p = 1.12, b = 2.422, c = 1.00, f, = - 1.12), we may 
conclude that for similar distributions of pressure the turbulent layer 

*ill separate considerably later than the laminar layer, since in the 
former case 1 f, 1 is almost 4.5 times as large as in the latter. 
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If at a certain moment of time t = 5 = 0 the boundary layer was lami- 
nar, the constant D in (3.2) will be determined by the following equation: 

Here the index 0 signifies that the quantity in question is chosen at 

t= c= 0, and by I$* is meant the value of Reynolds’ number Us* /V at 
instant t = 0, computed according to the theory of the laminar boundary 

layer. On the other hand, for the same distribution of pressure, but for 
the conditions of turbulent motion only, the quantity D = D2 is also ex- 
pressed according to formula (3.4), in which, however, R,* is computed 

according to the theory of the turbulent boundary layer. Since R,,* in the 

laminar layer is considerably less than RO* of the turbulent layer, the 

following inequality will be true: D1 < D2. On the basis of formulas 

(2.10) and (3.2), this inequality leads to the conclusion that in the 

presence of laminar motion up to some instant of time separation occurs 

later than in its absence. 

2. We assume that at the initial instant of time, t = 0, a semi- 

infinite plate begins to move with relation to the ambient liquid with 

a free stream speed U = U0 + ~(1 - cos o t ). We will assume that on the 

background of velocity Uc small oscillations are superposed (U,, >> a), 

the frequency of which, o, is considerably less than the frequency of the 

turbulent pulsations. This type of problem has been considered for the 

laminar boundary layer [ 3 1, and for the parameter f the following ex- 

pressions have been obtained: 

/= g;~xsi”wt 
OJ 

(x < aI’d), j = p ‘2 t sin ot (x > au”0 (3.5) 

where the origin of x is set at the leading edge of the plate. It is 

obvious that in the case of the turbulent boundary layer, the same ex- 

pression for f can be obtained with the coefficients O, p fixed by the 

formula (2.7). Because of the similar nature of the solution of the 

problem, this permits a verification of the difference between laminar 

and turbulent plate flow. From formula (3.5) it follows that two regions 

form on the plate, separated by a moving boundary x = allot. On one side 

of the boundary (x < aUo t), the boundary layer thickens, that is, the 

parameter f, and consequently a*, depends on z; on the other side of the 

line (z > aUot) the influence of the leading edge of the plate no longer 
has any effect, and 8* changes only with time. Little by little the de- 

veloping boundary layer covers the whole plate; the velocity of motion of 

the border of the indicated regions is equal to allo and is almost twice 
as great for turbulent as for laminar plate flow1 

Along with the development of the boundary layer, separation also 

takes place. Actually it is possible to conclude by use of equation (3.5) 
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that separation begins for x > alJo t at 

by the condition 

the instant of time t,, determined 

too sin N,, too = - p 2 NL 
sh 

(loo z 2 t,, N,, = $) (3.6) 

Here L is the scale of length, Ns,, is the Strouhal number, and p is 

the coefficient equal to 1.0 and 4.27 for laminar and turbulent layers 

respectively. It also follows, other things being equal, that the non- 

stationary turbulent boundary layer separates later than the laminar 

layer. 

Taking into account (3.5) and the expression (2.9), the shear stress 

and the drag F of a plate of length L washed by a current of liquid on 

both sides can be determined. If we designate the wetted surface of the 

plate by S, and introduce the coefficient of drag by using the formula 

F= C p l/2 p uq*, for Cf we obtain the following expression: 

c, = &IV tO’lr (0.99363 + 6!?\ + [OV!j!? - 0.00195 
I \ ) 

-t- Nshto sin NshtD 
0 I (3.7) 

where R = UuL/v. At the instant t ’ = 1.51 the whole plate of length L 
falls into the region in which the flow depends on x, and from that 

instant the formula for Cf takes the form: 

Cf = Ii-“7 0.0303 + 0.00496 G- Nsh sin Nshto 
0 ) 

In the case (I = 0. formula (3.7) corresponds to the development of a 
boundary layer on a plate which begins to move instantaneously from the 

state of rest, with a constant velocity Uq. For this case, at the instant 

to = 1.51, when steady motion has been established over the entire plate, 

Cf = 0.0303 R-1”, which agrees with the usual formula for drag [ 2 1. 

Putting 0 = 0. we evaluate the additional drag force due to the unsteady 

flow. For this purpose we fix the quantity A equal to the impulse of the 

drag force F for the time to = 1.51. Then. considering unsteady motion, 
we have A = 0.0497 p LR”“. On the other hand, for steady motion, we ob- 

tain A = 0.04611’ LR6”. It is evident from this that the magnitude of the 
impulse of the force F in unsteady motion is 8 per cent greater than the 

corresponding magnitude for steady motion. For laminar motion [ 3 ] this 

excess impulse of the force F amounts to almost 33 per cent. 

In conclusion two remarks must be made. 

1. Recently Loitsianskii has surmised that near the point of separa- 

tion C = (R*) const, since here r. = 0, and the influence of viscosity 
and thus of the Reynolds number R* vanishes. This assumption has an in- 
significant effect on the coefficients of the equations (1.10) and (2.6). 
and consequently hardly influences f or $I. At the same time, however, 

the size of the displacement 6* near the separation point is already 
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determined not by formula (2.8), but by another method described in mono- 

graph [ 2 1. 

2. In the case of laminar flow [ 3 1, and likewise for turbulent flow, 

in the first approximation for simplification of the computation of the 

boundary layer, it has been assumed that h = 6**/6* = const. Turning to 

the integral relations of impulses (1. l), it is easy to conclude that 

this assumption is more justified when h is less important in equation 

(1.1). This in turn will be the situation when in strongly unsteady flow 

the magnitudes characterizing the boundary layer change with time faster 

than x, and a U/d= is small in comparison with (d U/dt)/U. For more 

precise computations, both of laminar and of turbulent boundary layers, 

the assumption of a constant ratio 6 l */8* and the approximation that 

h(f) is a linear function is not correct; in that case the differential 

equation involving # is nonlinear. 

My thanks are due to L.G. Loitsianskii for his help in this work and 

his continuous interest. 

BIBLIOGRAPHY 

1. Loitsianskii, L.G., Priblizhennyi meted rascheta turbulentnogo pogra- 

nichnogo sloia na profile kryla (Approximate method of computation 

of the turbulent boundary layer on the profile of a wing). PMM 

Vol. 9, No. 6, 1945. 

2. Loitsianskii, L.G., Mekhanika Zhidkosti i Caza (Mechanics of Liquids 

and Cases). GTTI, 1957. 

3. Rozin, L. A., Priblizhennyi metod integrirovaniia uravnenii nestatsio- 

narnogo laminarnogo sloia v neszhimaemoi zhidkosti (Approximate 

method of integrating the equation of nonsteady laminar layers in 

incompressible liquids). PMM Vol. 21, NO. 5, 1957. 


